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Abstract

This paper presents an unconventional method for examining various kinematically admissible and physically
acceptable mechanisms of dilatant deformation in ductile materials. In this approach, the constitutive description of
material behavior is intentionally left incomplete, i.e., shear stresses and strain rates obey power law, but while material
dilatancy is allowed to exist, its form is not predetermined. By omitting the constitutive equation for dilatancy, multiple
boundary value solutions can be obtained; these solutions can be further examined and evaluated using an energy min-
imization criterion. The proposed method allows plausible constitutive assumptions for cavitation to be identified.
Using this method, we show that in the vicinity of a mode I crack tip, there are three distinct mechanisms of dilatant
deformation, each having strong experimental justification.
Published by Elsevier Ltd.
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1. Introduction

Typically, solving a boundary value problem requires that constitutive equations and boundary condi-
tions be completely identified. Our difficulties begin when some of the constitutive responses are not well
understood and, then, suppose that dilatancy in ductile materials is such a property in question. This paper
describes a suitable method for studying such an incompletely defined problem. In this analysis, the con-
stitutive equation for dilatancy is intentionally omitted. As a consequence, there are not one but several
boundary value solutions for which dilatant deformation obeys kinematical compatibility, stresses satisfy
equilibrium conditions, and boundary conditions are properly determined. An additional energy based
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Nomenclature

(x,y),(R,h),(z,z*) coordinate systems
w,w*,X stress functions
req, Ir,rij Tresca (maximum shear) stress, hydrostatic stress, and stress components
s,s*,g,g* complex conjugate shear stresses and strains
eeq, Ie, eij equivalent (maximum shear) strain, volumetric strain, and strain components
ux,uy,m,m* (x,y) and complex conjugate displacements
Mij,Nij,q,a microstructural tensors and microstructural parameters
Wt,Ws,Wc energy dissipation in the surroundings of a crack tip
K,r0,p material constants
k stress singularity factor
C;C�;Di;D�

i ; an; bn; dn;H
n
i ;H

nm
i ;Hnmk

i constants
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criterion and certain restrictions must be introduced to further select a desired solution. Here, we select
valid deformation mechanisms by minimizing the dissipation energy. In addition, rate of the energy dissi-
pation due to dilatancy and the dilatancy itself are nonnegative quantities at each point of a ductile mate-
rial. Based on the derivations presented here, we show that cavities may nucleate in ductile materials when a
certain pattern of an inelastic deformation is present. More precisely, when the requirement of kinematical
compatibility is imposed and the energy dissipation is kept at the minimum level, a ductile material may be
forced to exhibit dilatational deformation. When cavitation does not occur or when it is directly coupled
with stresses, such a solution to the boundary value problem becomes unique, that is, only one state of
stresses and deformation can be determined.

The proposed approach offers an opportunity to study various kinematically admissible mechanisms of
dilatant deformation. We show that for the mode I crack problem, there is not one but three mechanisms of
cavitation, each of them associated with a unique pattern of stresses. Furthermore, our theoretical predic-
tions suggest that the rate of the dissipation energy density might not obey the 1/R singularity in the cav-
itating surroundings of a crack tip. Departure from the 1/R HRR (Hutchinson, Rice, and Rosengren)
distribution makes sense (Rice, 2001) when the constitutive equation for cavitation is not described in terms
of potentials. It is worth mentioning that Guduru et al. (2001) presented experimental data that seem to
support the departure from the 1/R distribution.
2. Microstructural nature of inelastic flow

The homogenization technique employed in this analysis is based on the known concept introduced
by Hill (1972) and further explored by Hill and Rice (1972) that the bilinear stress and strain form is
invariant under changes of measure or reference state. Using this concept, Zubelewicz (1990, 1993)
showed that the internal structure of a crystalline material can be modeled by a set of representative
discontinuity planes imperfectly embedded into an elastic matrix; both the planes and the matrix occupy
a characteristic volume DV. Local slippages along these planes and crystal (grain) rotations cause mac-
roscopically observed deformation. As shown, the homogenized plastic dilatant strain rates can be de-
fined as follows:
_eij ¼ Mij _eeq; ð2:1Þ
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where _eeq is the equivalent strain rate and Mij represents the microstructural tensor
Mij ¼
1

2
ðNij þ qNikNkjÞ: ð2:2Þ
The tensors Nij = (nisj + sinj) and NikNkj = (ninj + sisj) satisfy the following conditions:
Nij ¼ N 2nþ1
ij ; N 2

ij ¼ N 2n
ij ; Nkk ¼ 0; N 2

kk ¼ 2; ð2:3Þ

in which n = 1,2,3, . . . ,1. The orthogonal vectors, ni and sj, describe an average (homogenized) normal
and slip direction in the deformed material. The function q indicates the material�s readiness for cavitation.
In this notation, the microstructural tensors are N 2

ij ¼ NikNkj, N 3
ij ¼ NikNklNlj and so on. When slip is re-

stricted to a single plane (plane stress or plane strain), there are only three components of the tensor Mij:
Mxx ¼
1

2
ðcos a þ qÞ;

Myy ¼
1

2
ð� cos a þ qÞ;

Mxy ¼
1

2
sin a;

ð2:4Þ
where the functions a and q may vary within the material, a = a(x,y) and q = q(x,y). A general three-
dimensional expression of the tensor was presented in Zubelewicz (1993). The strain rates _exx; _eyy , and _exy
are obtained by substituting (2.4) into (2.1). Subsequently, the strain rates are rewritten as
D_e ¼ _exx � _eyy ¼ _eeq cos a;

_exy ¼
1

2
_eeq sin a;

_I e ¼ _exx þ _eyy ¼ q _eeq;

ð2:5Þ
and brought into the following form:
_g ¼ D_e þ 2i_exy ¼ eia _eeq;

_g� ¼ D_e � 2i_exy ¼ e�ia _eeq;
_I e ¼ q _eeq;

ð2:6Þ
where i ¼
ffiffiffiffiffiffiffi
�1

p
. The complex conjugate shear strain rates ( _g and _g�) are defined through the function a and

the equivalent strain rate _eeq, while q is the strain rate triaxiality ratio, q ¼ _I e= _eeq. In the analysis to follow,
the strain rate triaxiality ratio does not need to be specified. The complex strain rates and stresses are
expressed through the (z,z*) complex variables, where z = x + iy and z* = x � iy.
3. Displacements

The complex shear strains g and g* are coupled with complex displacements as shown:
g ¼ 2
om
oz�

;

g� ¼ 2
om�

oz
;

ð3:1Þ
where m = ux + iuy, m* = ux � iuy, while ux and uy denote displacements in x and y directions. Now, the
displacements ux and uy can be expressed through the complex shear strains g and g* as follows:
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ux ¼
1

4

Z
gdz� þ

Z
g� dz

� �
þ 1

2
wm zð Þ þ w�

m z�ð Þ
� �

;

uy ¼
1

4i

Z
gdz� �

Z
g� dz

� �
þ 1

2i
wm zð Þ � w�

m z�ð Þ
� �

:

ð3:2Þ
The additional displacement functions wm and w�
m help in maintaining nonnegative values of the energy dis-

sipation and dilatancy. It must be noted that g and g* are nonanalytic complex conjugate functions, thus
the product of integration (Eq. (3.2)) is path dependent. This problem is resolved by choosing a path-
dependent integration, where one of the complex variables is kept constant while integrating with respect
to the other variable (Vakula, 1962). Knowing that _I e ¼ o _ux=oxþ o _uy=oy, the volumetric strain rate is
calculated directly from (3.2),
_I e ¼
1

2

Z
o _g
oz

dz� þ 1

2

Z
o _g�

oz�
dzþ _w

0
mðzÞ þ _w

�
m

0
ðz�Þ; ð3:3Þ
where w0
m ¼ owm=oz.
4. Kinematical compatibility

For plane strain, the kinematical compatibility equation
o
2 _exx
oy2

þ o
2 _eyy
ox2

¼ 2
o
2 _exy

oxoy
ð4:1Þ
is rewritten using the complex variables (z,z*), where the strain rates (_exx, _eyy , and _exy) are replaced by the
complex shear strain rates ( _g, _g�) and the volumetric strain rate _I e. Derivations not replicated in this paper
lead to the following result:
o2 _g
oz2

þ o2 _g�

oðz�Þ2
¼ 2

o2 _I e

ozoz�
: ð4:2Þ
The rate of cavitation _I e described by (3.3) satisfies the kinematical requirement (4.2).
5. Flow rules

An assumption that the inelastic deformation is triggered by the current stress rkl implies that the
components of the microstructural tensor Mij must be coupled with the stress components rkl, therefore
Mij =Mij(rkl). As mentioned earlier, a general three-dimensional relationship that satisfies the conditions
in (2.3) is presented in Zubelewicz (1993). When slip occurs at a single plane, the tensor components are
equal to 0 1
Mxx ¼
1

2

Drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr2 þ 4r2

xy

q þ qB@ CA;

Myy ¼
1

2

�Drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr2 þ 4r2

xy

q þ q

0
B@

1
CA;

Mxy ¼
rxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dr2 þ 4r2
xy

q ;

ð5:1Þ
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where the stress Dr is equal to Dr = rxx � ryy. It is convenient to replace (rxx,ryy,rxy) with complex stres-
ses defined as follows:
s ¼ Dr þ 2irxy ;
s� ¼ Dr � 2irxy ;
Ir ¼ rxx þ ryy :

ð5:2Þ
Then, the ratio of the complex shear strain rates _g= _g�, expressed as
_g
_g� ¼

D_e þ 2i_exy
D_e � 2i_exy

¼
Mxx �Myy þ 2iMxy

� �
_eeq

Mxx �Myy � 2iMxy

� �
_eeq

¼ Dr þ 2irxy

Dr � 2irxy
¼ s

s�
¼ e2ia; ð5:3Þ
is equal to the ratio of the complex shear stresses s/s*, and is a function of the angle a alone, where a = arc-
tan (2rxy/Dr). In this analysis, the stress component rzz is irrelevant because the deformation defined by
(2.1) and (2.2) is restricted to a single plane.
6. Power-law constitutive relations

In this analysis, the equivalent stress req is defined as
req ¼
1

2
Nijrij ¼

1

2

ffiffiffiffiffiffi
ss�

p
: ð6:1Þ
The equivalent stress req is in fact the Tresca stress (the maximum shear stress). The equivalent strain rate
(maximum shear strain rate) is derived directly from (2.6) and is equal to
_eeq ¼
ffiffiffiffiffiffiffi
_g _g�

p
: ð6:2Þ
The power-law constitutive equation
_eeq ¼ K
req

r0

� �p

ð6:3Þ
couples the equivalent strain rate _eeq and stress req. The stress exponent p identifies the desired deformation
mechanism, K is a material constant, and r0 is a material strength. The relations (5.3)–(6.3) allow construc-
tion of two constitutive equations:
_g ¼ K
ð2r0Þp

spþ1=2ðs�Þp�1=2;

_g� ¼ K
ð2r0Þp

ðs�Þpþ1=2sp�1=2;
ð6:4Þ
which couple the complex shear strain rates with complex shear stresses. Note that neither the in-plane pres-
sure Ir nor the rate of cavitation _I e enters the relations (6.4). Thus, there is a convenient decoupling between
thematerial responses due to shear and dilatancy. The constitutive equations become linear when p is equal to
one. When p approaches infinity, p! 1, this model describes a rigid plastic behavior. Then, the equi-
valent stress req is constant and the complex stresses are expressed through the angle a and the yield stress r0,
req ¼
1

2

ffiffiffiffiffiffi
ss�

p
¼ r0;

s ¼ 2r0eia;

s� ¼ 2r0e�ia:

ð6:5Þ
The first equation in (6.5) represents the known Tresca criterion.
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7. Equilibrium equations

The equilibrium equations are re-derived for a plane problem. We replace the stress components
(rxx,ryy,rxy) with the complex stresses(s,s*, Ir), and then rather simple derivations lead to the following
result:
os
oz

þ oIr

oz�
¼ 0;

os�

oz�
þ oIr

oz
¼ 0:

ð7:1Þ
It is worth mentioning that Wu and Hui (1987) used this form of the equilibrium equations to solve an elas-
tic crack problem. In our approach, we satisfy the equations with the use of two stress functions wr(z) and
X(z,z*) chosen as
s ¼ w�
rðz�Þ þ

Z
oX
oz�

dz;

s� ¼ wrðzÞ þ
Z

oX
oz

dz�;

Ir ¼ �X;

ð7:2Þ
where X is a real function defined through the complex variables z and z*. In these equations, we integrate
the function X with respect to either z or z*, while the other variable is constant.
8. Criterion of minimum energy

At this point of the analysis, there are five governing equations: two equilibrium equations (7.1), two
constitutive equations (6.4), and the kinematical compatibility equation (3.3) or (4.2). On the other hand,
we need to determine three complex stresses (s, s*, and Ir) and three strain rate components ( _g, _g�, and _I e),
thus six functions. Note that some of the functions are coupled. Therefore there are three independent
governing equations and four functions to be determined. As a consequence, several solutions may satisfy
the requirements of the statical and kinematical admissibility. Selection of an additional constitutive equa-
tion for dilatancy _I e or an assumption of the material�s incompressibility restores the uniqueness of the
solutions.

In this analysis, however, the sixth equation that describes the volumetric change in the material is delib-
erately omitted. This treatment provides the opportunity to study various kinematically admissible mech-
anisms of dilatant deformation. Among all available solutions only some are considered for further
analysis. Further screening is based on the assumption that the desired deformation mechanism has some
physical significance. Based on the arguments by Prigogine (1977), when internal and external boundary
conditions prevent a system from reaching thermodynamic equilibrium (that is, zero entropy production),
the system settles down to the state of ‘‘least dissipation.’’ In our system, the dissipative mechanism consists
of slippage and dilatancy. While slippage is well described, the dilatancy is allowed to take any form that is
both kinematically admissible and physically acceptable. This requires that the dissipation energy in the DV
surrounding the crack tip be at the minimum level. It will be shown that size of the volume DV is irrelevant.
From (2.1) and (6.1), the rate of energy dissipation is equal to
_W
t ¼ 1

2

Z
DV

rij N ij þ qNikNkj

� �
_eeq dV ¼

Z
DV

req _eeq dV þ 1

2

Z
DV

Ir
_I e dV : ð8:1Þ
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Here, _W
s ¼

R
DV req _eeq dV is the energy rate due to slip and _W

c ¼ 1
2

R
DV Ir

_I e dV results from nucleation and
growth of voids. In this approach, the energy rate due to slip is always equal to or greater than zero. Addi-
tional requirements are put in place to assure that both the energy rate due to cavitation, 1

2
Ir
_I e, and the

cavitation itself have nonnegative values at each point in the deformed material.
9. Near crack tip solutions

The stress functions wr and X discussed earlier are defined as
wr ¼
X
n

Cnzkn ;

X ¼
X
n;m

Dnmza
n
m z�ð Þb

n
m þ D�

nmz
bnm z�ð Þa

n
m

h i
;

ð9:1Þ
where the stress exponent kn is required to satisfy the condition kn ¼ an
m þ bn

m for any n and m defined be-
tween one and infinity. The stress coefficients Cn, C

�
n, Dnm, and D�

nm reflect boundary conditions of the prob-
lem under consideration. In case of an asymptotic analysis, the index n can be dropped and the complex
stresses defined by (7.2) become
s ¼ C�ðz�Þk þ
X
m

bmDm

am þ 1
zamþ1ðz�Þbm�1 þ amD�

m

bm þ 1
zbmþ1ðz�Þam�1

� �
;

s� ¼ Czk þ
X
m

bmD
�
m

am þ 1
ðz�Þamþ1zbm�1 þ amDm

bm þ 1
ðz�Þbmþ1zam�1

� �
;

Ir ¼ �
X
m

Dmzamðz�Þbm þ D�
mz

bmðz�Þam
h i

:

ð9:2Þ
It is already assured that the complex stresses satisfy the equilibrium conditions (7.1). The amplitude of the
stress functions (9.2) is given by the stress coefficients C and C*, while the ratios Dm=C, D�

m=C, Dm=C
�,

D�
m=C

� are the non-dimensional complex constants.
10. Boundary conditions

The boundary conditions for free crack surfaces are written as
ryy þ irxy ¼ 0 ð10:1Þ
for h = ±p, where h is the angle in the polar coordinate system (R,h) shown in Fig. 1. The boundary con-
ditions are further rewritten using the complex stresses, and Eq. (10.1) becomes
ryy þ irxy ¼
1

2
Ir � s�ð Þ ¼ 0; for h ¼ �p: ð10:2Þ
In the polar coordinate system, where z ¼ Rðcos h þ i sin hÞ and z� ¼ Rðcos h � i sin hÞ, the above condition
leads to four equations:



Fig. 1. Polar coordinate system attached to the crack tip.
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C1 cos kp þ
X
m

ðk þ 1Þðk þ 2Þ
ðam þ 1Þðbm þ 1ÞD

1
m cosðam � bmÞp ¼ 0;

C1 sin kp þ
X
m

ðk þ 1Þðam � bmÞ
ðam þ 1Þðbm þ 1ÞD

1
m sinðam � bmÞp ¼ 0;

C2 cos kp þ
X
m

ðk þ 1Þðam � bmÞ
ðam þ 1Þðbm þ 1ÞD

2
m cosðam � bmÞp ¼ 0;

C2 cos kp þ
X
m

ðk þ 1Þðk þ 2Þ
ðam þ 1Þðbm þ 1ÞD

2
m sinðam � bmÞp ¼ 0;

ð10:3Þ
in which m = 1,2, . . .,1, C = C1 + iC2, and D = D1 + iD2. In particular, when C2 = 0 and D2
m ¼ 0, these

equations describe the boundary conditions for the mode I crack problem. Here, the parameters am and
bm can be calculated from
ðk þ 2Þ tan½ðk þ 2Þp
 ¼ ðam � bmÞ tan½ðam � bmÞp
;
k ¼ am þ bm;

ð10:4Þ
where m = 1,2, . . .,1. For each k, there is an infinite number of pairs am and bm, (see Fig. 2).
Fig. 2. Pairs an and bn for varying stress singularity factor k.
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11. Mode I crack problem for p = 3

In the analysis to follow, the ductile material is assumed to obey the power-law constitutive equation
(6.3), where the stress exponent is assumed to be equal to 3. Furthermore, the stress components (s, s*,
and Ir) and strain rates ( _g, _g�, and _I e) are expressed in terms of the polar coordinate system (R,h). As a
consequence, the equivalent stress req, in-plane pressure Ir, equivalent strain rate _eeq, and dilatancy _I e,
are all defined through the variables R and h. The equivalent stress req is derived from (6.1) and takes
the following form:
req ¼
1

2
Rk~reqðhÞ; ð11:1Þ
where
~r2
eqðhÞ ¼ ðC1Þ2 þ 2C1

X
n

D1
nq

b
n cosðk þ dn þ 2Þh þ 2C1

X
n

D1
nq

a
n cosðk � dn þ 2Þh

þ 2
X
n;m

D1
nD

1
mqa

nq
b
m cosðdn þ dmÞh þ

X
n;m

D1
nD

1
m

�
qa
nq

b
m þ qb

nq
a
m

�
cosðdn � dmÞh: ð11:2Þ
The factors qa
n and qb

n are defined as qa
n ¼ an=ðbn þ 1Þ, qb

n ¼ bn=ðan þ 1Þ. Since the parameter a2 is constant
and equal to minus one, a2 = �1, the factors qb

2 are singular for all stress exponents k. In the analysis to
follow, the second term in the stress functions X is omitted. The parameter C1 is the amplitude of the stress
function (9.2) and the ratios (D1

n=C
1) are non-dimensional factors. The parameters dn are equal to

dn = an � bn. Taking into account all the above, the in-plane pressure defined through (9.2) is equal to
Ir ¼ �2Rk
X
n

D1
n cos dnh: ð11:3Þ
The complex shear strain rates are calculated from (6.4) and (3.3). For p = 3, the equation for cavitation
_I e ¼
K
8r3

0

Z
oðs2s�Þ

oz
dz� þ

Z o ðs�Þ2s
h i
oz�

dz

2
4

3
5þ _w

0
m þ _w

�0

m

� �
ð11:4Þ
becomes
_I e ¼
KR3k

4r3
0

_~I eðhÞ; ð11:5Þ
where
_~I eðhÞ¼A1 cos3khþ
k C1
� �3
2kþ1

cosðkþ2Þhþ2ðC1Þ2
X
n

D1
nH

n
2 cosdnhþðC1Þ2

X
n

D1
nH

n
3 cosð2kþdnþ4ÞhþðC1Þ2

�
X
n

D1
nH

n
4 cosð2k�dnþ4ÞhþC1

X
n;m

D1
nD

1
mH

nm
5 cosðkþdnþdmþ2Þh

þC1
X
n;m

D1
nD

1
mH

nm
6 cosðkþdn�dmþ2ÞhþC1

X
n;m

D1
nD

1
mH

nm
7 cosðk�dnþdmþ2Þh

þC1
X
n;m

D1
nD

1
mH

nm
8 cosðk�dn�dmþ2Þhþ

X
n;m;k

D1
nD

1
mD

1
kH

nmk
9 cosðdnþdmþdkÞh

þ
X
n;m;k

D1
nD

1
mD

1
kH

nmk
10 cosðdn�dmþdkÞhþ

X
n;m;k

D1
nD

1
mD

1
kH

nmk
11 cosðdn�dm�dkÞh

þ
X
n;m;k

D1
nD

1
mD

1
kH

nmk
12 cosðdnþdm�dkÞh: ð11:6Þ
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The term ðA1 cos 3khÞ in the above expression comes from the function ( _w
0
m þ _w

�0

m ) in (3.3), where A1 is a

constant. The function ( _w
0
m þ _w

�0

m ) has singularity of the same order as the other strain functions. Also,

( _w
0
m þ _w

�0

m ) must satisfy the symmetry condition for (±h). The constants (A1 and D1
n) will be determined

by bringing the dissipation energy to minimum. All the other parameters in (11.6) are equal to
Hn
2 ¼

qb
nðk þ an þ 1Þ

k þ bn
þ qa

nðk þ bn þ 1Þ
k þ an

;

Hn
3 ¼

qb
nðbn � 1Þ

2k þ an þ 2
;

Hn
4 ¼

qa
nðan � 1Þ

2k þ bn þ 2
;

Hnm
5 ¼ qb

nq
b
mðk þ an þ am þ 2Þ

bn þ bm � 1
þ 2

qa
nq

b
mðbn þ bmÞ

k þ an þ am þ 1
;

Hnm
6 ¼ qb

nq
a
mðk þ an þ bm þ 2Þ

bn þ am � 1
þ 2

qa
nq

a
mðbn þ amÞ

k þ an þ bm þ 1
;

Hnm
7 ¼ qa

nq
b
mðk þ bn þ am þ 2Þ

an þ bm � 1
þ 2

qb
nq

b
mðan þ bmÞ

k þ bn þ am þ 1
;

Hnm
8 ¼ qa

nq
a
mðk þ bn þ bm þ 2Þ

an þ am � 1
þ 2

qb
nq

a
mðan þ amÞ

k þ bn þ bm þ 1
;

Hnmk
9 ¼ qb

nq
b
mqa

kðan þ am þ ak þ 1Þ
bn þ bm þ bk

þ qa
nq

a
mqb

k ðbn þ bm þ bk þ 1Þ
an þ am þ ak

;

Hnmk
10 ¼ qb

nq
a
mqa

kðan þ bm þ ak þ 1Þ
bn þ am þ bk

þ qa
nq

b
mqb

k ðbn þ am þ bk þ 1Þ
an þ bm þ ak

;

Hnmk
11 ¼ qb

nq
a
mqb

k ðan þ bm þ bk þ 1Þ
bn þ am þ ak

þ qa
nq

b
mqa

kðbn þ am þ ak þ 1Þ
an þ bm þ bk

;

Hnmk
12 ¼ qb

nq
b
mqb

k ðan þ am þ bk þ 1Þ
bn þ bm þ ak

þ qa
nq

a
mqa

kðbn þ bm þ ak þ 1Þ
an þ am þ bk

:

ð11:7Þ
12. Mechanisms of dilatant deformation

The mode I crack solutions are developed for the stress function X assumed in the form of a four- and
six-term series, where the second term is omitted. It is found that the two stress functions produce similar
results. For comparison, contours of the equivalent stress req/r0 = 1 for an incompressible material
(k = �0.25) are shown in Fig. 5a. It is a special case, where the expressions (11.1) and (11.2) approximate
well the HRR stress field, while the dilatancy (11.6) reduces to zero. Since the analysis is computationally
intensive, a decision was made to continue this study using the four-term stress function. As assumed, the
material�s dilatancy _I e is permitted as long as it helps in restoring the kinematical compatibility, while rate
of the energy dissipation due to dilatancy is nonnegative. Under this condition, there is more than one solu-
tion available for further analysis. Final selection of the deformation mechanisms is based on the require-
ment that the dissipation energy in DV is at a minimum level. For the asymptotic crack problem, it is
convenient to write the criterion in a form of the energy ratio _W

c
= _W

s
, in which all solutions are scaled such

that rate of the energy dissipation due to shear _W
s
is equal to _W

s ¼ 1R4k. Because singularity of both the
energies (due to slip and cavitation) is same, the size of the volume DV becomes irrelevant. The energy is
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calculated in the crack surroundingsDV ¼ R2
0p, where R0 can be selected arbitrarily and, therefore, is as-

sumed to be one. The energy is minimized with respect to the parameters A1 and D1
n (n = 1,3,4). A numer-

ical minimization procedure was developed, in which each solution is obtained for a predetermined value of
the stress exponent k. It is assured that the rate of dissipation due to cavitation _W

c
and the dilatancy _I e are

non-negative quantities for all values of the angle h checked with a precision of 1� within the domain (0,2p).
We find that there is more than one such minimum for the mode I crack problem. In course of the analysis,
three independent mechanisms of dilatant deformation were identified and plotted as a function of the
stress singularity factork (Figs. 3 and 4). As shown in Figs. 5–8, each mechanism has a characteristic dis-
tribution of stresses (rRR, rRh, and rhh), the equivalent stress req/r0 = 1, and the rate of cavitation
_I e=K ¼ const. It is worth mentioning that the contours of the equivalent stress (Tresca stress), defined here
by the radius Rr and plotted as a function of h,
Rr ¼ ~reqðhÞ
2r0

� ��1=k
; ð12:1Þ
Fig. 3. Plots of energy ratio versus stress singularity factor.

Fig. 4. Cavitation in the crack tip surroundings versus stress singularity factor.



Fig. 5. (a) Contours of the maximum shear stress, mechanism 1, k = �0.25. Broken line corresponds to a 4-term stress function, the
solid line to a 6-term stress function. (b) Normalized stresses as a function of angle h mechanism 1, k = �0.25. Approximation: 4-term
stress function.

Fig. 6. (a) Contour of constant equivalent stress, mechanism 1, k = �0.23. (b) Contours of constant cavitation and stress triaxiality
ratio, mechanism 1, k = �0.23.
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are identical to the contours of the equivalent strain rate, _eeq=K ¼ const. The constant rate of cavitation
_I e=K ¼ const is calculated and plotted in a similar manner.

12.1. Mechanism 1 cavitation controlled by the stress triaxiality ratio (Ir/req)

Mechanism 1 is characterized using 44 values of the stress singularity factor k in the range of �0.250 to
�0.226. The first solution is found for k equal to �0.250. This is the only case where the deformation is free
of dilatancy. Plots of the stresses (rRR,rRh, and rhh) shown in Fig. 5a and b are similar to the ones obtained
by Rice and Rosengren (1968) as well as Hutchinson (1968). All the other solutions within the mechanism
are associated with a dilatant deformation. This mechanism expires for k = �0.226. This analysis suggests
that the dilatancy is controlled by the stress triaxiality ratio, _I e ¼ _I eðIr=reqÞ. As shown in Fig. 6b, contours
of the constant rate of cavitation _I e and the stress triaxiality ratio Ir /req have similar shape for the whole
range of the stress singularity factor k. When the cavitation rate becomes more pronounced, the shape of
the stress contour req evolves, (compare Figs. 5a and 6a). It is worth noting that our stress contours resem-
ble the contours obtained numerically by Needleman and Tvergaard (1991). In the latter case, the material
is assumed to obey the flow potential, introduced by Gurson (1977), in which the void growth is controlled



Fig. 7. (a) Contour of constant equivalent stress, mechanism 2, k = �0.23. (b) Contours of constant cavitation and stress triaxiality
ratio, mechanism 2, k = �0.23. (c) Normalized stresses as a function of angle h mechanism 2, k = �0.23.

Fig. 8. (a) Contour of constant equivalent stress, mechanism 3, k = �0.225. (b) Contours of constant cavitation and stress triaxiality
ratio, mechanism 3, k = �0.225. (c) Normalized stresses as a function of angle h mechanism 2, k = �0.225.
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by the stress triaxiality ratio, while void nucleation is described in terms of the shear stress and pressure,
matrix strain rate, and stress rates. Furthermore, Onck and van der Giessen (1999) developed a model
in which the matetrial that surrounds the crack tip is represented discreetly by grains and grain boundaries,
while the far field material is described as a continuum. As shown, a small-scale cavitation modifies the
HRR stress distribution only slightly. We observe the same trends in our analysis, as shown in Figs. 5a
and 6a. We predict that this mechanism expires when minimum of the energy is no longer distinguishable
from the numerical noise. For k greater than 0.226, a small perturbation applied to the parameters A1 or D1

n

(n = 1,3,4) brings the energy ratio to another minimum—a minimum that is associated with mechanism 2.

12.2. Mechanism 2 cavitation governed by the equivalent stress req

This mechanism is found for 55 values of k taken from the range �0.250 to �0.196. Mechanism 2 de-
scribes the deformation that is localized within a narrow process zone extending straight ahead of the crack
tip, Fig. 7a. Peak values of the maximum tensile stress (rhh) are found to be directly ahead of the crack tip,
Fig. 7c. Behind the crack tip, all the stress components are nearly equal to zero. In this case, there is no
correlation between the stress triaxiality ratio and dilatancy, Fig. 7b. Instead, the rate of cavitation seems
to be proportional to the maximum tensile stress and/or the equivalent shear stress.

12.3. Mechanism 3 unknown stress dependence

The third mechanism is investigated by selecting 35 values of k within the range �0.227 to �0.195. In this
case, the maximum shear strain rate is localized within three narrow zones, as shown in Fig. 8a. This re-
sponse can be explained by the observed waviness in the equivalent stress req when plotted against the angle
h, Fig. 8c. The mechanism generates much greater values of the energy dissipation due to dilatancy when
compared with the ones in the mechanism 1. The analysis shows that a significant dilatancy develops in the
direction of about 55� with respect to the crack plane. The dilatational zone coincides with one of the three
shear branches, Fig. 8b. Onck and van der Giessen (1999) predicted a similar mechanism for a ductile mate-
rial that is in an advanced stage of dilatational fracture. Extensive grain boundary rotation (the second term
in Eq. (2.2)) can be blamed for the unique pattern of stresses and deformation. Yet, the dilatancy itself has
an unspecified stress origin. It cannot be linked with either the stress triaxiality ratio or the maximum tensile
stress. Further analysis must follow to better understand and physically validate the mechanism.

12.4. Coexistence of deformation mechanisms

The theoretical analysis indicates that there is more than one mechanism by which cavities nucleate and
grow ahead of a mode I crack tip. The dilatational damage begins under the deformation process described
by mechanism 1. This mechanism expires and is either replaced by mechanism 2 or it may bifurcate and
become mechanism 3. Multiple mechanisms are known to coexist near a mode I crack tip. Hayherst
et al. (1984) reported that different patterns of crack growth exist in an aluminum alloy (D19S), copper,
and 316 stainless steel. Ozmat et al. (1991) observed branching of a crack in stainless steel (Type 304) at
high temperature (600–775 �C) in plane strain. In their case, a pre-fatigued sharp crack propagates on a
plane at an angle of 50� with the median plane of the initial crack. Mechanism 3 describes this growth well.
Since the crack propagated in a pre-cracked, fatigued material, it is likely that mechanism 1 expired and was
replaced by mechanism 3. In another experiment conducted by Ozmat et al., a specimen with no pre-crack
fatigue having a blunt notch of a finite radius was subjected to constant loading. In this case, the crack
propagated along the median plane, as predicted by both the mechanisms 1 and 2. Later, the crack bifur-
cated and propagated at about 50�; it then changed path again to become parallel to the median plane. In



Fig. 9. Deviation of energy density rate from 1/R HRR field (reproduced data from Guduru et al., 2001).
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addition, Guduru et al. (2001) have observed all the cavitation mechanisms under dynamic load conditions
in high strength C300 maraging steel and in ductile HY100 steel.

12.5. Departure from the 1/R HRR distribution

The present analysis suggests that the stress and strain singularity near the cavitating crack tip may not
obey the 1/R HRR singularity, as suggested by Rice and Rosengren (1968) as well as Hutchinson (1968).
One plausible explanation is that the available energy is converted not only to the surface energy of a prop-
agating crack but also is consumed by voids growing in the region surrounding the crack. Experimental
data presented by Guduru et al. (2001) indicates that the energy density rate rij _eij near the cavitating crack
tip, measured as a function of temperature change under nearly adiabatic conditions, may indeed deviate
from the commonly accepted 1/R HRR type of distribution. This deviation was magnified by an increased
rate of cavitation, Fig. 9. We find that the data by Guduru et al. for a very high velocity impact (50m/s)
plotted as a function of the temperature distribution around a mode I crack tip followed a power-law rela-
tionship (1/R0.91) and that a significant change in the response occurred upon a slower impact (4m/s), still
well within the range of adiabatic conditions, where a (1/R0.7) temperature distribution best fit the data.
Our present analysis agrees with these experimental results and indicates that the deviation from a 1/R dis-
tribution is expected, however, it is a self-limiting phenomenon. Mechanism 1 expires when the singularity
of the energy density is equal to (1/R)0.89. Mechanisms 2 and 3 expire for k in the range of �0.196 to
�0.195, corresponding to an energy singularity on the order of (1/R)0.78.
13. Conclusions

Typically, the phenomenon of void nucleation is linked with stresses. While there is no doubt that stres-
ses magnify the process of cavity nucleation and growth, one may also agree with Alvez and Jones (1999)
that a material�s dilatancy is a reflection of a strain pattern in the material. Since an inelastic shear
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deformation alone might not satisfy the requirement of kinematical compatibility, we speculate that the
cavitation described by Eq. (3.3) may be required to restore the compatibility.

The proposed analytical approach is useful in solving the mode I crack problem. One interesting feature
of this method is that various kinematically admissible mechanisms of cavitation, which may develop near a
stress singularity point, can be explored. Although the true nature of cavitation processes is still open and
needs further investigation, our analysis suggests probable deformation mechanisms that may occur in a
cavitating material. It seems that the cavitation process is first coupled with the stress triaxiality ratio.
An initial sharp crack produces very high stresses, therefore this mechanism is expected to expire quickly
and becomes either the Daugdale–Barrenblatt mechanism, or bifurcate and be replaced by the mechanism
that is associated with large plastic deformation localized within three shear bands. Our analysis shows that
not one but two or even three constitutive responses are possible during the deformation process. Most
certainly, further study must be conducted to properly address the issue.

We are in the process of extending this method to study various kinematically admissible and physically
acceptable modes of deformation in complex structures, including, various forms of dilatational deforma-
tion in metals subjected to extreme (shock) conditions.
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